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SYNOPSIS 

One of the most significant models used to describe and predict the performance of reverse 
osmosis type membranes is the finely porous model (FPM) . In this paper, the basic as- 
sumptions of the model are examined and modified. The two most serious problems with 
FPM are that an incorrect form of material balance on the solute is used and that the 
osmotic pressure effects are not completely taken into account for electrolytes. A modified 
model (called MD-FPM) , which is based on the same physical precepts is derived. Equations 
describing the concentration profile for both models have been derived and compared. It 
has been shown that the FPM can predict physically unacceptable results. Difficulties in 
using the parameters from the model for prediction or for membrane development work 
are discussed. Simulation results for the MD-FPM model are consistent with what is ex- 
pected for reverse osmosis type membranes. 

INTRODUCTION 

The finely porous model ( FPM ) was proposed orig- 
inally by Merten.' In this model transport of solute 
and solvent occurs in small 1-dimensional pores. A 
balance of applied and frictional forces is used to 
describe the flow of solute inside the pores, as pro- 
posed by Spiegler.' In principle, the solute partition 
coefficient K can be different on the high-pressure 
side and low-pressure side of the membrane. This 
form is known as FPM-4, implying that the model 
has four parameters. Often the partition coefficient 
is assumed to be the same on each side of the mem- 
brane ( Kz = K3 = K )  to give a three-parameter model 
(FPM-3). A complete derivation of the model 
(FPM) has been given by Jonsson and Boesen3 and 
by Soltanieh and Gill.4 

In this paper, we examine the theoretical aspects 
of the FPM-3 and FPM-4 relationships. Some im- 
portant limitations in these models are removed 
and the new modified models, called the modified 
FPM-3 (MD-FPM-3) and the modified FPM-4 
(MD-FPM-4) relationships, are derived. The 
mathematical formulation of the model is done for 
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the general case of the MD-FPM-4 relationship, and 
then the MD-FPM-3 relationship is derived from 
the general relationship. 

In this paper, only simulation results for the 
models are shown, and real predictions will be dis- 
cussed in a future paper. 

THEORY 

The modified finely porous models (i.e., the three- 
and four-parameter forms) are derived here in a 
manner similar to the derivation of the original 
models. First, the equation of solute flux together 
with the equation of solute material balance are ex- 
amined. Then, the equation of fluid velocity through 
the pores are derived, and finally, the equations re- 
quired to describe the overall flux and separation 
are presented. 

Since these FPM models assume that the pores 
are 1-dimensional, then conditions vary only with 
axial position through the pore. Compared to a 2- 
dimensional model, these conditions at any axial 
position represent the radially averaged values. For 
instance, C A  ( z )  represents the radially average 
concentration of A in the pore at position z (see 
Fig. 1). 
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Figure 1 
brane pore. 

The cylindrical coordinate system in a mem- 

The Equations of Solute Flux and 
Solute Material Balance 

Since the pore is relatively long (i.e., with respect 
to its radius), the solution velocity profile is assumed 
to be fully developed. Then, similar to the FPM, the 
equation of solute flux is obtained, from a force bal- 
ance on the solute in the pore,3 as 

where 

XAB + XAM - DAB 
XAB DAM 

-- b =  ( 3 )  

Equation ( 1 ) is true for the case of nonelectrolytes. 
However, for the case of strong electrolytes, the 
equation of salt flux is derived, in Appendix A [ eq. 
(A.7)1, as 

where a(z) is the osmotic pressure of the solution 
at  z inside the pore. 

The correct way of using the above differential 
flux equation is to write the differential material 
balance in the pore, substitute in the flux equation, 
and solve the resulting second-order differential 
equation subject to boundary conditions at  the pore 
inlet and outlet. The general boundary conditions 

are given by the definition of the solute partition 
coefficient: 

i. At the pore inlet, 

ii. At  the pore outlet, 

The differential material balance states that the 
divergence of solute flux vector at  steady state is 
zero, 

where V is the del vector differential operator. In 1- 
dimensional form, eq. ( 7 )  becomes 

- 0  dJA 
dz  
-- 

Then, combining eqs. ( 1) [or eq. ( 4 )  for electrolytes] 
and (8) gives the following second-order differential 
equations: 

(9)  

where 

and 

subject to the boundary conditions, eqs. (5)  and (6).  
Equation ( 10) is equivalent to eq. (9)  for dilute so- 
lutions of electrolytes. The parameter a, which is 
the dimensionless fluid velocity in the membrane 
pore, represents the ratio of convection to molecular 
diffusion forces. Equation ( 9 )  has been solved an- 
alytically in Appendix B [ eq. (B.4) ] to give the con- 
centration profile in the pore, in the MD-FPM-4 
relationship, as 
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Now, substituting the concentration profile into the 
solute flux eq. (I), or eq. (4) ,  gives an explicit 
expression for the solute flux in terms of the di- 
mensionless velocity and the partition coefficients: 

as derived in Appendix A. 
The above approach can be compared to that used 

in the finely porous model. In the FPM relationship, 
the following material balance in the pore has been 
proposed 

This equation was combined with eq. (1) to give a 
first-order differential equation, which was solved 
using the boundary condition at the pore inlet [ eq. 
( 5 )  1 .  The resulting equation was substituted into 
the second boundary condition [ eq. ( 6 )  ] and rear- 
ranged to give an expression for separation, f '. 

The separation f ' compares the concentration at 
the boundary layer above the membrane, C A 2 ,  with 
the permeate concentration, C A 3 ,  and is the theo- 
retical separation obtained in the absence of con- 
centration polarization. Therefore, the separation 
f ' is defined, for dilute solutions, as 

f ' =  c A 2  - c A 3  

c A 2  
(16) 

The relationship between f' and a, for the FPM-4 
relationship, has been derived in Appendix B as 

The problems with the above method (i.e., the 
finely porous model) are as follows: 

i. 

11. 

Equation (15) ignores the diffusive contri- 
bution to solute flux and considers only the 
convective contribution; this violates the 
physical facts in eq. ( 1 ) . 
Equation (15) ignores the distinction between 
concentrations inside and outside the pore; a 
velocity inside the pore is combined with a 
concentration outside the pore. 

The result of these errors is that the finely porous 
model calculates the concentration and concentra- 
tion gradient in the pore incorrectly (note that the 
same mistake exists in the surface force-pore flow 
(SF-PF) model of reverse osmosis5). The equation 
of concentration profile in the pore (in FPM) has 
not been shown in the literature; however, its der- 
ivation is straightforward and is shown in Appen- 
dix B. 

Equation of Dimensionless Fluid Velocity 
in MD-FPM 

As a first step, the Poiseuille expression of fluid ve- 
locity is modified for the pore fluid to include the 
frictional force between the solute and the pore 
wa11,3 

where 

and t is the fractional pore area which corrects the 
fluid velocity in a single pore to the volumetric per- 
meation flux for a whole membrane. 

Within a pore, the flux and the velocity of solute 
are related as 

and J A  is given by eq. ( 14). On the other hand, the 
pressure gradient term, - d P / d z ,  can be well ap- 
proximated by5 

d P ( z )  _ _ _ _  
d z  

1 
= - [ A P  - ~ ~ ( 1  - K z )  + r3(l  - K 3 ) ]  

7 

which is similar to that in the FPM3 and A P  is the 
pressure drop across the membrane. Then, using eqs. 
(19)-(21) together with eq. (14 ) ,  eq. (18) becomes 
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Under the special case a 4 1, where 

then a can be derived from eq. (2'2) as 

If this condition [ i.e., eq. (23) ]  is not met, then cy 
is implicit in eq. ( 22) and can be determined by trial 
and error. 

Relationships for the Solute and Solvent Fluxes 
through the Membrane and Separation 
in MD-FPM 

The solute and solvent fluxes through the membrane 
are related to the corresponding fluxes through a 
single pore as 

where JA is given by eq. (14)  and 

where the dimensionless solvent velocity aB is de- 
fined by eq. (A.9) in Appendix A. The total per- 
meation flux through the membrane is 

Using eqs. (14)  and ( 2 7 ) ,  the above equation be- 
comes 

+ CRT( :)] 
However, from eq. ( 11 ) , 

Also, 

Then using eqs. ( 30 ) and ( 31 ) , eq. ( 29 ) is employed 
to determine the ratio of solvent to solution veloc- 
ities as 

Now, using the relationship 

and using eqs. ( 14) and ( 2 7 ) ,  eq. (33 ) becomes 

- -  J B  - C R T ( Z )  
J A  

(34)  

Combining eqs. (33)  and ( 3 4 )  then gives 

Finally, substituting for ( C Y B / ~ )  from eq. (32)  in eq. 
( 35 ) , the following relationships are derived for 
separation: 

f ' =  ( 1  - &/b)exp(a )  - ( 1  - K J b )  
[ exp(a )  - 11 + K3/b  

for nondissociating solutes 

[ I  ~ (u' + v-)K2/b]exp(a)  
- [I - (v' + v-)K3/b] 

[ exp(a )  - 11 + ( v + +  u-)K, /b  

(36)  

- - 

for strong electrolytes 

The above equation, which is valid only under the 
restriction of eq. ( 2 3 ) ,  is compared to that in FPM 
given by eq. ( 17) .  That  is, under this restriction [of 
eq. (23)  1 ,  Equations ( 17) and (36)  are the same for 
nondissociating solutes and differ significantly for 
dissociated electrolytes. 

To determine the numerical values of separation 
in the above equations, the value of a is needed 
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which can be determined from eq. (24);  however, 
r3 (and therefore f ') is also needed. Therefore, these 
equations are coupled and can be solved by a trial 
and error technique. 

Because [ exp ( a )  - 13 is always greater than 0 
then, 

f ' > 0 (positive separation) when 

K / b  < 1 

K / b  < l / ( v +  + v - )  
(for nondissociating solutes) 

(for strong electrolytes) 

f ' < 0 (negative separation) when 

K / b  > 1 

K / b  > 1 / (  v +  + v - )  
(for nondissociating solutes) 

(for strong electrolytes) 

and 

f ' = 0 (no separation) when 

K / b  = 1 

K / b  = ( v +  + v - )  
(for nondissociating solutes) 

(for strong electrolytes) 

Therefore, this modified model, the MD-FPM, can 
predict positive, negative, or zero separation, which 
is consistent with experimental results. For instance, 
negative separation is found for solutes such as phe- 
nol with cellulose acetate membranes.6 

Equation of Dimensionless Fluid Velocity in FPM 

As given in Ref. 3, the volumetric flux of permeation 
in FPM-3 is 

and from [ l ]  for FPM-4 is 

Then, using eq. ( 11 ) , eq. (38)  can be rearranged in 
terms of the dimensionless solution velocity as 

Equation (39)  can be compared directly to eq. (24)  
in the MD-FPM model. First, the MD-FPM-4 [ eq. 
(24 ) ]  and the FPM-4 [eq. (39 ) ]  are similar when 
the approximation in eq. (23)  is valid, although no 
such restriction exists in the formulation of the 
FPM. The partition coefficients in eq. (39)  are com- 
pared to the coefficients divided by the b factor in 
eq. (24) ,  and the CA3RT term, in eq. (39) ,  is replaced 
by r 2 K / b  in eq. ( 2 4 ) .  These differences may lead 
to different predictions under special conditions. 

The MD-FPM-3 Relationship 

The MD-FPM equations discussed so far are for the 
general case of MD-FPM-4 relationship in which 
partition coefficients are allowed to vary from the 
pore inlet to the pore outlet. However, frequently 
the partition coefficient is assumed to be constant, 

K2 = K3 = K (40)  

Making this above assumption generates the MD- 
FPM-3 which is then a three-parameter model. 
When eq. (40)  holds, the MD-FPM-4 equations 
(22 ) ,  (24 ) ,  (29 ) ,  (35 ) ,  and (36)  reduce to the fol- 
lowing forms for the MD-FPM-3 relationship, re- 
spectively: 

N T = L ( $ ) [  X A B  
. (43)  

+ CRT( $11 

AT 
1"" ' exp(a)  - 11 b j  

f ' =  ( 1  - K/b) [exp(a )  - 11 
[exp(a)  - 11 + K / b  

for nondissociating solutes 
(45)  

- ( 1  - ( v + +  v-)K/b)[exp(a)  - 11 - 
[exp(a)  - 11 + (v' + v - ) K / b  

for strong electrolytes 
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where AX is the osmotic pressure difference across 
the membrane: 

The concentration profile inside the membrane, 
in the MD-FPM-3, is given by eq. (B.5) in Appen- 
dix B. 

RESULTS AND DISCUSSION 

I:, this section, some of the key results using the 
new MD-FPM-3 relationship are examined and 
compared to similar cases for the FPM-3 relation- 
ship. Similar results can be obtained using the MD- 
FPM-4 relationship; however, these results are not 
shown for the sake of brevity. 

Solution to MD-FPM and FPM Relationships 

In order to use the MD-FPM model, as outlined in 
the Theory section, the equations describing the 
fluid permeation flux and separation are coupled 
and, therefore, a trial and error technique is required 
to find the solution. The appropriate equations that 
need to be solved for the MD-FPM-3 relationship 
are eqs. (30),  (41),  and (45).  If eq. (23) holds, eq. 
(42) can be used instead of eq. (41).  The Faxen 
equation is suggested to predict the b factor in the 
case of solute exclusion from the membrane.5 

In a simulation it is of interest to examine the 
direct effect of changing the model parameters on 
membrane performance. However, for any of the 
FPM (or MD-FPM) models this procedure is con- 
founded by the interdependence of the model pa- 
rameters. The partition coefficient K and friction 
function b are both known to be functions of mem- 
brane pore size (e.g., Ref. 5 ) .  Increasing the pore 
size decreases the partition coefficient for two rea- 
sons: The potential function between the solute and 
the pore wall decreases as the solute is further from 
the membrane, and the size of the solute relative to 
the pore size decreases which reduces steric exclu- 
sion from the pore. Similarly, increasing the pore 
size reduces b as the hydrodynamic drag between 
the solute and the pore wall is decreased. 

Therefore, a method of quantifying the interde- 
pendence of the parameters is required. The rela- 
tionship between b and pore size can be approxi- 
mated by the Faxen equation. The relationship be- 
tween partition coefficient and membrane surface 
potential can be related by the Boltzmann equation; 

this relationship, which is used in 2-dimensional 
pore models in Refs. 5 and 7, can be written as 

where 

P = r/Rw 

so that the K value is 

where X is the ratio of solute molecular radius to the 
pore radius. As suggested in the modified surface 
force-pore flow (MD-SF-PF) model,5 an empirical 
relationship for the potential may be written, for 
the case of solute exclusion from membranes, as 

Equations (49) and (50) establish a reasonable re- 
lationship between the membrane pore size and 
partition coefficient parameters. 

To solve the MD-FPM-3 relationship, knowing 
the parameters of the model (Rw, 7 / t, and K or B1 ) , 
the following procedure is recommended 

(1) Make an initial guess for C A ~ .  
( 2 )  Solve eq. (41) to find a. An iterative tech- 

nique is required to solve eq. (41 ). If eq. 
( 23 ) holds, eq. ( 42 ) may be used instead as 
the easier solution. 

(3 )  Solve eq. (45) to find the separation f ’. 
(4 )  Solve eq. (30),  using eq. (31) ,  to find the 

total permeation flux NT. 

It has been assumed, in the above procedure, that 
the Faxen equation is used to predict b,5  and eqs. 
(49) and (50) are employed to determine the par- 
tition coefficient K as a function of pore size. 

A similar procedure can be used to solve the MD- 
FPM-4 relationship. In this case, the equations to 
be solved are eqs. (22) ,  (36), (30),  and (31). Equa- 
tion (24) may be used instead of eq. (22) if eq. (23) 
holds. 
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For the case of FPM relationships, similar nu- 
merical procedure can be taken. Equations (39),  
(17),  (30),  and (31) are used to solve the FPM-4 
relationship. For the FPM-3 relationship, the same 
equations are used together with the simplification 
of eq. (40) to solve the model. Again, the Faxen 
equation has been assumed to predict b. 

Simulation Results 

In order to see how the MD-FPM-3 relationship be- 
haves differently from the FPM-3 relationship, the 
two models were evaluated under a variety of sim- 
ulated conditions. These results are discussed below. 

Separation and Flux Ratio. Figure 2 illustrates the 
effect of K / b  on membrane separation for both the 
MD-FPM-3 and FPM-3 relationships. The oper- 
ating conditions are: C A 2  = 0.04840 and 0.27151 
kmol/m3 of NaCl in water in Figures 2 ( a )  and 2 (b) ,  
respectively, AP = 1500 kPa and T = 25°C; the 
membrane has a pore radius of 9.39 X lo-'' m. For 
both models, separation increases with decreasing 
K / b  [increasing potential according to eq. (47)] .  
Calculations are only done for K / b  in the range 1.0- 
1.0 X l op4  as normally K / b  values for NaCl solute 
would fall in this range. These results are consistent 
with the limiting cases discussed in the subsection 
beginning with eq. (25). It should be noted that, 
since K and b are both functions of pore size, the 
results in Figure 2 (a t  a fixed pore size) imply a 
fixed b value (for the fixed solute NaCl) and a change 
in membrane potential as K / b  changes [see eq. 
(47) 1. What is clear is the two models will predict 
different separation values for the same K / b  pa- 
rameter; the FPM-3 model overpredicts separation 
values by up to 90%. Over the whole range, the sep- 
aration is always predicted to be lower by the MD- 
FPM model than by the FPM model. This difference 
is caused by the correct inclusion of solute osmotic 
pressure by the MD-FPM model and by the inclu- 
sion of the diffusional component of the solute flux 
in the MD-FPM model that is ignored in the FPM 
model (i.e., the higher the solute flux the lower the 
separation). In the limit, with a small partition coef- 
ficient K or large friction factor b ,  the FPM and 
MD-FPM relationships approach each other. Thus 
for very small pores, where the solute is almost com- 
pletely rejected the two models both converge to 
100% separation as expected. This limit can also be 
reached when the membrane potential is very strong 
which results in a very small partition coefficient 
for the case of solute exclusion from the membrane. 

K / b  

Figure 2 Effect of K / b  ratio on membrane separation 
for the NaCl-H20 system as predicted by the MD-FPM 
model (-) and FPM model ( -  - -) :  ( a )  C,,, = 0.04840 
kmol/m3, ( b )  C,, = 0.27151 kmol/m3. Other conditions 
are: AP = 1500 kPa, T = 25"C, and Rw = 9.39 X lo-'' m. 

Figure 2 (b)  illustrates similar information for the 
higher feed concentration of CA, = 0.27151 kmol/ 
m3 of NaCl in water, keeping the other conditions 
same as in Figure 2 ( a ) .  The same trends, as in Fig- 
ure 2 ( a ) ,  are predicted except the separation values 
are lower for this higher concentration case. The 
lower separation at higher concentration is expected 
due to the higher osmotic pressures at higher con- 
centrations. Again, the two models approach each 
other at lower values of K / b  and the FPM model 
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overpredicts the separation values due to the reasons 
stated above. 

Equations (49) and (50) have been employed to 
study the effect of membrane pore size on membrane 
performance as illustrated in Figure 3. The operating 
conditions are: CA2 = 0.04840 and 0.27151 kmol/m3 
of NaCl in water, AP = 1500 kPa, T = 25OC, and 
the potential parameter used is O1 = 53.73 X lo-'' 
m, which is a typical value for a reverse osmosis 
membrane. Figure 3 ( a )  illustrates how separation 
varies with pore size; as the pore size is increased, 

0. 5. f0. IS. 20. 25. 30 
&, X10-10. m 

Figure 3 Effect of membrane pore size, with feed con- 
centration as a parameter, on membrane performance for 
the NaCl-H20 system as predicted by the MD-FPM 
model: ( a )  separation vs. pore size; (b)  flux ratio vs. pore 
size. Conditions: AP = 1500 kPa, T = 25"C, and O1 = 53.73 
x lo-'' m. 

the separation decreases. The decrease in separation 
is more pronounced for the higher feed concentra- 
tion (i.e., the dashed line). These results are con- 
sistent with those in the literature.8 The flux ratio 
is the ratio of the solution flux with solute present 
to the flux of pure water. Figure 3 ( b )  illustrates how 
the flux ratio NT/Np varies under the same condi- 
tions as in Figure 3 ( a ) .  As the pore size is increased 
the flux ratio increases toward unity, and as the feed 
concentration is increased the ratio decreases due 
to osmotic pressure effects. 

Figure 4 presents typical results for reverse os- 
mosis membrane performance for the usual case of 
solute exclusion. Figure 4 ( a )  investigates the mul- 
tiple effects of operating pressure AP and membrane 
pore size Rw on the separation f ' and the flux ratio 
NT/Np by the MD-FPM-3 relationship. The feed 
concentration is CA2 = 0.04840 kmol/m3 of NaCl in 
water, and T = 25OC. The membrane potential pa- 
rameters are the same as in Figure 3. As the oper- 
ating pressure is increased, the separation and flux 
ratio increase, and as the pore size is increased the 
separation decreases and the flux ratio increases. 
These are expected trends as observed experimen- 
tally and are similar to those predicted by the MD- 
SF-PF model.5 

Concentration Profiles. This section considers the 
concentration profiles through the membrane as 
predicted by the MD-FPM-3 and FPM-3 relation- 
ships. The concentration profiles are given by eq. 
(B.5) (MD-FPM-3 relationship) and eq. (B.9) 
(FPM-3 relationship). In the MD-FPM model, since 
the differential equation for solute concentration is 
restricted to boundary values at the two end points 
of the membrane, negative concentrations are never 
predicted. However, in the FPM model, because the 
differential equation in this model is restricted to 
only one end point of the membrane and the other 
end point is free, negative values for solute concen- 
tration can be predicted which is physically unreal- 
istic. 

To compare the two models in this respect, one 
set of experimental data from Jonsson and Boesen3 
are examined as follows. Choosing the DDS-800 
membrane and 1% sucrose-water system, the data 
are: CA2 = 0.03 kmol/m3, CA2/CA3 = 1.3444, and JV 
= 1.0 X m/s. Using the FPM-3 relationship, 
they estimated3 

Rw = 15 X lo-'' m, T / E  = 29.5 X m, 

K = 0.76, and b = 1.362 
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- MD-FPY-3 Yodel 

The above data are used, now, in the equations of 
concentration profiles. The diffusivity data for su- 
crose systems are given in Table 5.2-1 of Ref. 9; for 
a 0.03M aqueous solution the value is DA* = 0.515 
X lo-' m2/s. Equations to determine a are eq. (41)  
in MD-FPM-3 and eqs. (39) and (40) in FPM-3. 

The results are shown in Figures 5 ( a )  and 5 ( b )  
for the MD-FPM-3 and FPM-3 relationships, re- 
spectively. The MD-FPM-3 relationship predicts 
reasonable values that satisfy the boundary condi- 
tions. However, the FPM-3 relationship predicts 

0.85 

0.8 

/ 
- /  

I 
- I  

1 (a) 

1 
0.75 

0. 1000. 2000. 3000. 4000. 5000. 6000. 7000. 8000. 

Operating Pressure,  kPa 

0.95 - 

0.9 - 
a 
F z 

0.85 - 

I 
0.8 - 

0.75 ' I  ' I ' I ' I * I '  I " ' 
0. 1000. 2000. 3000 4000. 5000. 6000. 7000. 8000 

Operating Pressure.  kPa 

Figure 4 Effect of operating pressure, with pore size as 
a parameter, on membrane performance for the NaCl- 
HzO system as predicted by the MD-FPM model: ( a )  sep- 
aration vs. pressure; ( b )  flux ratio vs. pressure. Condi- 
tions: C A z  = 0.04840 kmol/m3, T = 25OC, and fll = 53.73 
x lo-'' m. 

0.025 

0.023 

- 2 . 5 1 ' '  ' 1 . 1 .  I ' I ' 1 ' 1 ' I ' 1 . 1  
0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I. 

c 
Figure 5 Concentration profile inside the pore for su- 
crose-water system as predicted by: ( a )  MD-FPM model; 
( b )  FPM model. Conditions3: feed concentration = 1% 
sucrose ( C A ~  = 0.03 kmol/m3), c A z / c A 3  = 1.3444, K = 0.76, 
R w  = 15 X lo-'' m, b = 1.362, and 7 / t  = 2.95 X m. 

negative values for the concentration after [ > 0.2385 
inside the pore so that the boundary condition at [ 
= 1 is not satisfied. Obviously, this situation is im- 
possible. This result is a reflection of the incorrect 
form of the material balance used in the derivation 
of the FPM relationships as discussed in the first 
subsection of the Theory section. Therefore, the 
concentration gradient, which drives the solute 
through the membrane, is calculated incorrectly for 
the FPM model and hence the membrane perfor- 
mance is also incorrectly calculated. 
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CONCLUSIONS 

The finely porous model (FPM) has been modified 
and extended, mathematically, in several key re- 
spects. The extended model, called the modified 
finely porous model (MD-FPM) has been derived, 
in detail, with either three or four adjustable param- 
eters; the MD-FPM-3 and MD-FPM-4 relation- 
ships, respectively. The differences include the ma- 
terial balance on the solute in the pore, the fluid 
velocity in the pore, and correction of osmotic effects 
for the case of electrolytes. An efficient procedure 
is presented to solve the models. The new model has 
been shown to predict the performance expected for 
reverse osmosis membranes. The differences be- 
tween the FPM and MD-FPM relationships have 
been illustrated as functions of operating variables. 
The models are further compared by using data in 
the literature for aqueous sucrose solutions and a 
DDS membrane. The FPM relationship can predict 
unreasonable results for the concentration profile 
in the membrane while the concentration profile is 
correctly predicted by the MD-FPM relationship. 

NOMENCLATURE 

friction parameter defined in eq. ( 3  ) , dimension- 
less 
molar density of solution (kmol/m3) 
solute concentration a t  boundary-layer solution 
(kmol/m3) 
solute concentration in permeate solution (kmol/ 

axial solute concentration inside a pore (kmol/ 

solute diffusivity in free solution ( m2/s )  
solute diffusivity inside a pore ( m2/s )  
theoretical separation defined by eq. ( 1 6 ) ,  di- 
mensionless 
total force driving solute through the pore ( k J /  
m kmol ) 
frictional force between solute and solvent (kJ /  
m kmol) 
frictional force between solute and the pore wall 
( k J / m  kmol) 
constant of integration in eq. (B.7) (kmol/m3) 
constant of integration in eq. ( B . l )  (kmol/m3) 
constant of integration in eq. (B.3) (kmol/m3) 
integrating factor defined by eq. (B.2 ) , dimen- 
sionless 
solute flux through a single pore ( kmol/m2 s)  
solvent flux through a single pore (kmol/m2 s )  
volumetric flux through a membrane ( m 3 / m 2 s )  
local partition coefficient, dimensionless 
partition coefficient defined in eq. (5), dimen- 
sionless 

m3) 

m3) 

partition coefficient defined in eq. ( 6 ) ,  dimen- 
sionless 
solute flux through a membrane ( kmol/m2 s )  
solvent flux through a membrane (kmol/m2 s )  
total permeation flux through a membrane (kmol/ 
m2 s )  
hydrostatic pressure (kPa )  
radial coordinate inside the pore and normal to 
axial flow (m ) 
gas constant (kJ/kmol K )  
effective radius of solute molecule ( m )  
average radius of membrane pores ( m )  
temperature ( K ) 
solution velocity inside the pore ( m / s )  
solute velocity inside a pore ( m / s )  
solvent velocity inside a pore (m/s)  
cylindrical coordinate parallel to the pore wall ( m )  

Greek Letters 

solution velocity defined in eq. (11) ,  dimensionless 
solvent velocity defined in eq. (A.9) ,  dimensionless 
fractional pore area of membrane, dimensionless 
solution viscosity (kPa  s )  
potential parameter defined in eq. (50) ( m )  
ratio of solute molecular radius to pore radius, di- 
mensionless 
chemical potential of solute in the pore (kJ/kmol) 
number of kmol of cations from dissociation of 1 
kmol salt 
number of kmol of anions from dissociation of 1 
kmol salt 
axial coordinate defined in eq. ( 12) ,  dimensionless 
osmotic pressure of boundary-layer solution (kPa) 
osmotic pressure of permeate (kPa )  
osmotic pressure of solution inside the pore (kPa)  
osmotic pressure difference defined by eq. (46)  

radial coordinate defined in eq. (48) ,  dimensionless 
average pore length taking tortuosity into account 
( m )  
potential function defined by eq. (50),  dimension- 
less 
friction constant between solute and solvent (kJ  
s/m' kmoI) 
average friction constant between solute and 
membrane (kJ  s / m 2  kmol) 

(kPa )  

APPENDIX A: DERIVATION OF SOLUTE 
FLUX EQUATIONS IN THE FPM AND 
MD-FPM RELATIO N S H I PS 

A balance of applied and frictional forces on the 
solute molecules in the pore yields 
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Then, eq. (A. 1 ) , using eqs. (A.2 ) and ( A.4 ) , becomes 

(A.5 1 
JA RT RT d x ( z )  

XAM - 
a(z) dz d Z )  

- 

On the other hand, from eq. (A.3), 

Now, using eq. (A.5), eq. (A.6) becomes 

where b has been defined by eq. ( 3) .  Equation (A.7) 
can be rewritten as 

JA = i (&)[ - d* ( ' )  + aBn(z)] (A.8) 

The derivative d a / d z  can be determined from the 
above equation. Using this derivative and eq. (A.10), 
eq. (A.8) becomes 

which is the equation of solute flux in MD-FPM-4 
relationship. 

Employing eq. (40),  the above equation reduces 
to the following form for the MD-FPM-3 relation- 
ship: 

APPENDIX B: DERIVATION OF 
CONCENTRATION PROFILES A N D  

A N D  FPM RELATIONSHIPS 
SEPARATION IN THE MD-FPM 

MD-FPM Relationship 

Starting with eq. ( 9 )  and the boundary conditions, 
eqs. (5)  and (6),  eq. ( 9 )  is integrated with respect 
to [ to yield 

where G is a constant of integration. Multiplying 
eq. (B. l )  by the following integration factor, 

and integrating the resulted equation, one obtains 

where [ has been defined by eq. ( 12) and 

Now, using eq. ( 13 ) and van 't Hoff 's law of osmotic 
pressure, 

where H is another constant of integration. 
In order to determine the constants G and H ,  the 

boundary conditions are employed. Using eqs. (5)  
and (6 ) ,  G and H are determined and substituted 
into eq. (B.3) to give the concentration profile in 
MD-FPM-4 relationship as 

,. 1 1 - exp ( a )  ] J--' 
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Using eq. (40), the above equation reduces, for 
the MD-FPM-3 relationship, to the following form: 

FPM Relationship 

Combining eqs. (1) and (15), the following first- 
order differential equation is obtained: 

where a and 4 have been defined by eqs. ( 11) and 
( 12). Multiplying eq. (B.6) by the integrating factor 
in eq. (B.2) and integrating the resulted equation, 
one obtains 

Using eq. (5)  as the boundary condition, the con- 
stant g is determined and substituted into eq. (B.7) 
to give the concentration profile in FPM-4 relation- 
ship as 

Equation (40) can be employed to convert the above 
equation to the concentration profile in FPM-3 as 

Now, using eq. (6 ) ,  eq. (B.8) can be employed to 
derive the following relationship for the CA3/CA2 ra- 
tio: 

Then, using eq. ( 16) as the definition of separation, 
the following correlations are derived for separation, 
in the FPM-4 relationship: 

which reduces to the following form for FPM-3 re- 
lationship, when eq. (40) is employed: 

(B.12) f ' =  (1 - K/b)[exp(a)  - 11 
[exp(a)  - 11 + K / b  
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